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Chemical contaminants (e.g. metals, pesticides, pharmaceuticals) are chan-

ging ecosystems via effects on wildlife. Indeed, recent work explicitly

performed under environmentally realistic conditions reveals that chemical

contaminants can have both direct and indirect effects at multiple levels of

organization by influencing animal behaviour. Altered behaviour reflects

multiple physiological changes and links individual- to population-level

processes, thereby representing a sensitive tool for holistically assessing

impacts of environmentally relevant contaminant concentrations. Here, we

show that even if direct effects of contaminants on behavioural responses

are reasonably well documented, there are significant knowledge gaps in

understanding both the plasticity (i.e. individual variation) and evolution

of contaminant-induced behavioural changes. We explore implications

of multi-level processes by developing a conceptual framework that inte-

grates direct and indirect effects on behaviour under environmentally

realistic contexts. Our framework illustrates how sublethal behavioural

effects of contaminants can be both negative and positive, varying

dynamically within the same individuals and populations. This is because

linkages within communities will act indirectly to alter and even magnify

contaminant-induced effects. Given the increasing pressure on wildlife and

ecosystems from chemical pollution, we argue there is a need to incorporate

existing knowledge in ecology and evolution to improve ecological hazard

and risk assessments.
1. Introduction
Contamination of the environment with diverse inorganic and organic com-

pounds, such as pesticides, pharmaceuticals and metals, represents one of the

main environmental challenges driven by anthropogenic activity. In 2010,

the global chemical industry’s value was US$4.12 trillion, having risen 54%

over a decade [1]. In addition, the trend towards global urbanization is concentrat-

ing chemical consumption in cities faster than environmental interventions and

remediation systems can be implemented, including in developing countries

near biodiversity hotspots [2]. The increasing production and release of chemicals

means that wildlife, humans and ecosystems are continuously exposed to chemi-

cal contaminants. While large-scale mortality events of wildlife represent an
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obvious, if rare, sign of chemical releases, chemical contami-

nants can elicit more subtle but nevertheless important and

harmful ecological impacts [3]. Further, chemical contamination

of the environment is certainly not limited to short-term, acute

exposures. Effects of long-term, low-level chronic exposures

can be equally deleterious, though less obvious for human

observers. In this review, we develop a conceptual framework

that integrates concepts and approaches from multiple

disciplines to investigate how chemical contaminants can

alter animal behaviour, with resultant impacts on short- (e.g.

individual and community) and long-term (e.g. evolutionary)

responses, potentially leading to population declines.

Research on chemical contaminants conventionally

recorded a limited range of endpoints, most commonly by

studying mortality following exposure in the laboratory and/

or by testing the impact of a single contaminant on a single

species under standardized laboratory conditions ([4], but see

[5]). These approaches are logistically tractable and repeatable

but are criticized for their simplicity, particularly when such

experiments neither take chemical nor biological complexity

into account [6]. Behaviour, on the other hand, is the result of

numerous complex developmental and physiological pro-

cesses, and so connects physiological function and ecological

processes [7]. Thus, behavioural change provides a comprehen-

sive measure of both direct and indirect effects of chemical

contaminants on individuals, linking to population-level

processes [8–10] and, importantly, is often impacted at much

lower contaminant concentrations than are traditional toxico-

logical endpoints [11]. Here, we illustrate how behavioural

responses can represent a powerful, highly quantifiable and

biologically relevant indicator of environmental impacts.

Chemical contaminants can affect animal behaviour both

directly and indirectly. Direct effects on behaviour in wildlife—

here, we focus mostly on vertebrates—are caused by contami-

nants acting on the physiology of an animal (e.g. impaired

sensory or cognitive abilities, altered endocrine/neural signal-

ling, metabolic dysfunction). To date, research in behavioural

ecotoxicology has largely focused on direct effects of con-

taminants on individuals (e.g. activity) (see §2). In contrast,

indirect effects, when contaminant-induced changes to animal

behaviour in one organism or species have cascading effects on

otherorganisms andspecies in the exposed system, have received

far less attention [12–15]. Indirect effects are most pronounced

when a contaminant affects exposed organisms differentially,

such as when one species is more sensitive and another more

resistant (i.e. asymmetrical effects; [12,14,16]). While the impor-

tance of investigating both direct and indirect effects of

contaminants is evident, this multi-directional approach has

rarely been applied in ecotoxicology (but see [15,17]).

In this review, we focus exclusively on studies conducted

under ‘natural’ conditions, specifically measuring behavioural

responses following contaminant exposures in the wild or at

environmentally relevant concentrations in the laboratory. We

first critically examine existing literature on the role of chemical

contaminants in mediating direct effects on individual behav-

iour (§2). In contrast with previous reviews [14,17], our focus

centres on sublethal effects, particularly those induced by emer-

ging contaminants, such as pharmaceuticals. Moreover, as well

as considering short-term, mean behavioural responses to

exposure, we discuss how chemical contaminants can alter

trait variance (i.e. plasticity) and act as potent evolutionary

forces. Moving from effects on individuals, we investigate

how chemical contaminants can alter interspecific interactions
indirectly via changes in behaviour of susceptible species (§3).

By integrating these collective effects, we develop a conceptual

framework to identify ways in which animal behaviour can be

affected by chemical contaminants (§4). In doing so, we use

predator–prey interactions as a case study to demonstrate

how our conceptual framework has real-world impact. While

we highlight the challenges of scale and complexity involved

with predicting ecological effects of chemical contaminants

(§5), we also provide directions for future research (§6). Finally,

the overarching aim of this review is to improve research

practices by increasing the ecological relevance of research

approaches employed, in order to uncover global hazards

and risks posed by chemical contaminants.
2. Direct effects on individual behaviour
Here, we discuss why, in a rapidly changing world, we need

to expand our concept of direct effects—perhaps more accu-

rately ‘mean behavioural responses’—to incorporate the

potential for chemical contaminants to affect both plasticity

in, and evolution of, behavioural responses.

(a) Direct effects
Exposure to chemical contaminants can result in direct effects

on a range of both ‘general’ behaviours (e.g. activity levels)—

changes in which can have knock-on effects on multiple

fitness-related traits—and specific mechanisms underpinning

specific behaviours. Given that behaviour is the product of

interconnected physiological, anatomical and neurological pro-

cesses, and, in the wild, organisms are usually exposed to

chemical cocktails rather than single contaminants, pinpointing

mechanistic pathways between exposure to a contaminant and

a behavioural change can be challenging. For example, round

gobies (Neogobius melanostomus) collected from heavily con-

taminated industrial sites (e.g. polychlorinated biphenyls

(PCBs), PAHs, metals) [18] or exposed to municipal wastewater

effluent [19] both showed reduced aggression, even though the

contaminant mixtures were very different.

Disruption of reproductive behaviours resulting from

exposure to chemical contaminants has been increasingly

studied in both laboratory and field settings because of the

obvious population-level consequences [8]. Mechanisms

underlying such behavioural changes include contaminant

actions on endocrine and neural signalling, via changes to

receptors, enzymes and/or transporters [20–22]. For instance,

environmental exposures to organochlorine pesticides reduce

parental care behaviour in predatory birds [23]. Studies on

fish have demonstrated that exposure to municipal wastewater

treatment plant effluent (e.g. [19]), and the active ingredients

in (and metabolites of) the oral contraceptive pill, reduce

nest building and courtship behaviours (reviewed in [20]).

Furthermore, exposure to the insecticide endosulfan disrupts

pheromonal communication between the sexes in red-spotted

newts (Notophthalmus viridescens), leading to disrupted mate

choice and depressed mating success [24]. Apparently subtle

changes in reproductive behaviour could potentially be as

devastating for fitness as major malformations of reproductive

morphology, because an animal that fails to attract a mate or

care for offspring appropriately will accrue zero fitness.

Changes in animal movement (e.g. frequency and speed)

following contaminant exposure are common behavioural

endpoints in ecotoxicological studies [25,26]. For example,

http://rspb.royalsocietypublishing.org/
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small-scale activity, which is often measured in the laboratory,

has high ecological importance because it increases encounter

rates with both resources (e.g. food, potential mates) and

risks (e.g. predators, diseases). Activity also underlies individ-

ual dispersal and migration tendencies [27,28], although

smaller scale movements measured in the laboratory do not

automatically reflect larger scale movements in the field.

Chemical contaminants can alter these movement behaviours

by disrupting either sensory capabilities used to locate

suitable environments and resources (e.g. inability to detect

chemical cues [29–31]) or physiological pathways governing

and supporting movement (e.g. neural/endocrine disruption,

metabolic dysfunction [32,33]). Contaminants can, for instance,

directly impair movement, making animals less adept at cap-

turing prey and/or escaping predators, as has been noted in

vertebrates exposed to acetylcholinesterase-inhibiting pesti-

cides [34]. So far, only a handful of studies have connected

these measures to dispersal or migration in the wild. One

such study showed that Atlantic salmon (Salmo salar) smolts

exposed to the anxiolytic pharmaceutical oxazepam migrate

faster both in laboratory migration pools and down a river

[35]. By contrast, while round gobies collected from heavily

contaminated environments dispersed more slowly in a labora-

tory maze, there was no evidence that dispersal was affected

in the wild [36]. Recent work has also demonstrated that

exposure of European starlings (Sturnus vulgaris) to a PCB mix-

ture in the laboratory resulted in reduced activity and incorrect

orientation for migration [37], indicating that exposed birds

might migrate later and less accurately in the wild. Overall,

activity seems to be a sensitive and relatively easily measured

endpoint, but its potential to indicate individual fitness or

population-level processes is assumed rather than proven, in

most cases.

Chemical contaminants can also interfere with complex

behaviours, such as predator-avoidance, grouping and aggres-

sion, which have direct implications for fitness and population

dynamics. By acting on the sensory system, contaminants can

affect an organism’s responses to conspecifics or predators

by, for example, reducing their ability to detect stimuli, but

also rendering them less active or motivated to respond [29].

If receivers are unable to detect prey, predators or signals

from conspecifics, or alternatively if signallers emit altered sig-

nals, this could lead to ineffective communication [38]. The

resulting disruption of group interactions and coordination

could potentially reduce the anti-predator and food-location

benefits of grouping [39]. By impacting conspecific detection

pathways, chemical contaminants can also alter aggression

and dominance hierarchies among individuals. For example,

captive rainbow trout (Oncorhynchus mykiss) exposed to cad-

mium, which damages the olfactory epithelium, were less

aggressive towards an unexposed rival and, therefore, formed

dominance hierarchies faster [40].

Interestingly, some chemicals, such as psychoactive

pharmaceuticals, have actually been designed to modulate

adaptive stress or fear responses. Thus, they have great poten-

tial to impact foraging and anti-predator responses of wild

animals (e.g. [41–44]). Indeed, recent studies have shown that

exposure of fish to environmentally relevant concentrations of

the antidepressant fluoxetine can extend the duration of ‘freez-

ing’ behaviour [44] after predatory attack and increase activity

levels regardless of the presence of a predator [43]. Because

natural selection favours individuals that can quickly and accu-

rately detect and assess risk, any disruption of this fine-tuned
system is likely to have important implications for individual

fitness [45] (see electronic supplementary material for more

on predator–prey effects).

(b) Plasticity
Individuals can adjust their behaviour in response to chemical

contaminants, i.e. they show phenotypic plasticity [7]. This

‘plasticity’ in behaviours has been the subject of much interest

in behavioural ecology, because of its role in enabling species

to cope with rapid environmental change [46,47]. However,

most ecotoxicological studies so far have focused primarily

on the mean behavioural responses of the contaminated popu-

lation, with little to no mention of the variance in the trait. To

date, we are unaware of any research explicitly investigating

how contaminants can modulate behavioural plasticity or flexi-

bility (i.e. how responsive individuals are to environmental

variation) (but see [41]; §5). Predictions as to how plasticity

will be modulated by chemical contaminants are not straight-

forward. If a behaviour is attenuated by a contaminant by,

for example, all individuals becoming inactive regardless of

environmental conditions, this could erode plasticity. Thus,

there would be no benefit to individuals having variable

responses to environmental changes, because they would

never be expressed. Consequently, over time, this could

decrease the intensity of selection for plasticity. In turn, this

could reduce population variation in responsiveness to

environmental change, reflecting a decrease in variance in be-

havioural responsiveness of all individuals. Conversely, one

study found that exposure of jumping spiders (Eris militaris)

to pesticides led to an increase in within-individual behavioural

variability, while not changing the population’s average level of

predatory behaviour [48]. There is a clear need to integrate new

experimental designs, technologies and statistical approaches

(e.g. [35,47–50]) from behavioural ecology to measure individ-

ual behavioural responses under varying environmental

conditions, such as, for example, multi-stressor studies, to

better understand the consequences of contaminant exposure.

(c) Chemical contamination drives evolution
There is growing interest in the long-term, multi-generational

consequences of chemical contamination and how contaminants

might modulate population persistence and evolutionary trajec-

tories. Our current focus is on how selection can act directly on

exposed organisms, although it is important to acknowledge

that selection may also operate indirectly via impacts of chemical

contaminants on, for example, a species’ prey, or competitors

(see §4).

It is established that exposure to chemical contaminants can

result in the evolution of physiological resistance, with perhaps

the best-studied example being the micro-evolution of resist-

ance in populations exposed to metal pollution (see [51,52]).

By contrast, far less is known about how this resistance

might affect the subsequent behavioural responses of exposed

organisms. Adaptive physiological adjustments could reduce

the likelihood that downstream behaviours are maladaptive.

On the other hand, changes in physiology can also have nega-

tive effects on behaviour and life histories via the reallocation of

resources required for growth and reproduction. For example,

laboratory selection for cadmium resistance in least killifish

(Heterandria formosa) resulted in decreased fecundity, female

life expectancy and brood size [53]. Whether such trade-offs

also impinge on behaviour remains to be tested.

http://rspb.royalsocietypublishing.org/
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Even in the absence of physiological resistance, organisms

can simply change their behaviour, for example altering their

diet, to avoid contaminants. However, it is often unclear

whether these behavioural changes reflect plasticity or evolved

responses [54,55]. Studies have shown spatial avoidance of

contaminated sediments and water by aquatic invertebrates

[55] and vertebrates [54,55], as well as adjustment of migration

routes by salmon in response to metal pollution [56]. Other

species show temporal avoidance of potential contaminant

exposure by employing a faster life history or changing repro-

ductive timing [52]. An interesting hypothesis is that the

adaptive potential of an organism to respond rapidly to

strong selection favouring earlier maturation and reproduction

could, in turn, facilitate adaptations to novel stressors, such as

chemical contaminants [57].

If organisms have neither evolved physiological tolerance

nor behavioural compensation, exposure to chemical contami-

nants can result in drastic population declines [58]. This

potentially creates a destructive feedback loop where a reduction

in population size leads to further loss of genetic diversity, thus

restricting the adaptive potential of populations [59,60], includ-

ing adaptive behavioural responses. Chemical contaminants

(e.g. persistent organic pollutants) can also affect mutation rate

(e.g. [61]), which may either compensate for the loss of genetic

diversity during population bottlenecks (e.g. marsh frogs,

Rana ridibunda [62]) or otherwise alter population responses

to contaminants [63]. However, most contaminant-induced

mutations are likely to be deleterious [64]. Thus, adaptive behav-

iour that shields genotypes from otherwise harsh selection

imposed by chemical contaminants could allow for population

persistence and the maintenance of adequate levels of standing

genetic variation crucial for further adaptation [65].

Chemical contaminants can also impact the strength and

targets of selection via their direct effects on behaviour.

For example, because sexually selected behaviours can affect

the rate and trajectory of evolution (e.g. [66]), contaminants

that interfere with sexual selection (e.g. endocrine-disrupting

chemicals, EDCs; [67]) have considerable potential to affect

subsequent evolution. For example, in European starlings,

treatment with an EDC mixture resulted in males producing

longer and more complex songs that are preferred by females,

despite exposed males also having suppressed immune

responses [68]. Whereas, in guppies (Poecilia reticulata),

exposure to the agricultural contaminant 17b-trenbolone

increased the occurrence of coercive copulatory behaviour in

males, thus circumventing female mate choice [69]. While

such changes that weaken sexual selection could further con-

tribute to population decline [70], some studies find the

opposite effect, whereby sexual selection enhances the evol-

ution of mechanisms to cope with contaminants, presumably

resulting in population growth. For example, flour beetles

(Tribolium castaneum) evolved resistance to a pyrethroid

pesticide faster when sexual selection was allowed to occur

compared with when it was experimentally precluded [71].

Given the importance of evolution in facilitating population

persistence, a key question is: what might limit the ability of

organisms to evolve adaptive physiological or behavioural

responses to contaminants? One possibility is that it may be

difficult to adaptively respond simultaneously to multiple con-

taminants, or, more broadly, multiple stressors that exert

conflicting selection pressures [72]. Resistance to a single class

of contaminants, such as pesticides, can evolve very quickly,

but evolving resistance to cocktails of contaminants with different
modes of action is likely to be much slower. Here, the ability to

cope with a particular contaminant could make it more difficult

to deal with another [63]. A complementary idea emphasizes the

role of evolutionary history—i.e. the notion that organisms often

have greater difficulty coping with stressors that are truly ‘novel’,

as opposed to those that are mechanistically similar to those that

are familiar [73]. Clearly, there is a need for a deeper mechanistic

understanding of when and why plastic or evolutionary

responses to one contaminant should facilitate or conflict with

responses to another.
3. Indirect effects of chemical contaminants on
behaviour via interspecies interactions

Contaminants can, as outlined above, exert direct effects on the

behaviour of species, which often results in decreases in organ-

ism abundance. However, species and their behaviours can

also be altered indirectly because changes in behaviour (or

abundance) of susceptible species will lead to cascading indir-

ect effects—even on resistant species—at all trophic levels

within a community. One of the most commonly documented

indirect effects of contamination is predator responses to

reduced prey abundance caused by contaminant-induced

direct lethality or reproductive failure in their prey species.

A population crash of fathead minnows (Pimephales promelas),

caused by experimental EE2-exposure of a whole lake, led to

cascading indirect effects: zooplankton populations in the

exposed lake increased without minnow predation, while the

biomass of larger lake trout (Salvelinus namaycush) decreased

without minnows as a prey item [14]. Indirect effects can also

reduce the efficacy of ecosystem services provided by wildlife.

For instance, population crashes of Gyps vultures in India due

to diclofenac toxicity resulted in an increase in feral dogs

scavenging on decaying carcasses and a consequent increase

in human rabies infections from dog bites [74]. By contrast,

examples of indirect effects caused specifically by changes to

animal behaviour are rare in the literature [16]. For example,

mummichog (Fundulus heteroclitus) from industrial sites were

less active and less adept at capturing prey grass shrimp

(Palaemonetes paludosus) than were fish at pristine sites, allowing

these prey to grow larger and become more abundant [75].

We predict that contaminant-induced increases in boldness or

aggression in one species, for example, will change the compe-

tition and predation pressures on, and thus alter the behaviour

of, other species within a community (figure 1). Contaminant-

disrupted courtship leading to declines in abundance is

predicted to have cascading effects on the interspecies inter-

actions across a community. Here, we use cascading effects as

a tool to illustrate the importance of indirect effects in ecological

risk assessment, although other indirect effects such as keystone

predator effects and exploitative competition can also be locally

important [76]. The key point, here, is the need to understand

the mechanism, i.e. the contaminant-induced change in

behaviour(s), initiating the cascade.

Given the complexity of studying multi-species responses

to contaminants [12], it is not surprising that indirect commu-

nity effects, particularly those acting via changed behaviours,

have not yet been broadly studied and quantified. First, mul-

tiple organisms must be studied simultaneously in real time

using environmentally realistic mesocosms or field-based

studies. Second, the system often must be studied for longer

durations than are typical of laboratory exposures (i.e. several

http://rspb.royalsocietypublishing.org/
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Figure 1. Outline of our conceptual framework modelling the direct and indirect effects of a chemical contaminant using predator – prey dynamics as a case study.
Two predatory species (A and B) are exposed to a chemical contaminant. (a) State 1 shows initial changes to species in the food web at the individual and
community levels; (b) state 2 includes feedback loops, which show dynamic interactions between species in time and space. Increases and decreases in population
size for each species are indicated by arrows. The solid arrows indicate direct effects, dashed arrows indirect effects, dotted arrows nutrient cycling and blue arrows
species interactions.
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months to years). One might argue that studying indirect

effects is redundant because the net effect on the community

is the ultimate endpoint. However, because species compo-

sitions differ between most environments and reactions to

contaminants can be highly species-specific, the net effect on

a mesocosm community will only provide the outcome for

that particular community. Without a mechanistic understand-

ing of which behaviours in which species are affected and how,

the generality, and, as such, the predictive power of mesocosm

studies for risk assessment of particular contaminants, is lim-

ited at best. Knowledge of indirect effects is also crucial for

modelling ecological risk, a promising and cost-effective tool

that will help to reduce the number of animals required for

ecotoxicological testing.
4. Conceptual framework for understanding the
ecological and evolutionary impacts of
chemical contaminants

Here, we have developed a conceptual framework that can be

used by researchers aiming to design experiments or research

programmes that move away from the ‘one chemical–one

species–one (usually lethal) endpoint’ style of ecotoxicology

(but see [71]) towards a more holistic approach. Specifically,

our framework demonstrates the direct and indirect effects

of chemical contaminants on the behaviour of individuals

within a population, and of species within communities. We

draw upon knowledge and literature from ecology and lay

out potential scenarios of community-level effects caused by

chemical contaminants (figure 1). As communities are com-

posed of interconnected populations overlapping in time and

space, the effects of chemical contaminants on communities

necessarily manifest in the interactions within and among

populations [72]. For example, some of the most salient

interactions shaping ecological communities worldwide

are between prey and their predators [72,73]. All animals are

either prey or predators at some point in their lives and this

interaction often has considerable consequences on individual

fitness and population size [74].

Imagine that a chemical contaminant is introduced into an

ecosystem. This chemical does not change the behaviour of top
predator ‘species B’, but does increase the boldness of a second

top predator ‘species A’, resulting in species A taking more

risks, spending longer foraging and less time avoiding preda-

tors. ‘Species C’, the prey of species A, which is resistant to

the contaminant, is indirectly affected because of the increased

time and energy spent on anti-predator behaviours, but it is

still consumed at a higher rate than when the ecosystem was

uncontaminated. Thus, prey species C decreases in numbers,

which, in turn, causes its own plant prey ‘species D’ to prolifer-

ate, thereby shifting the nutrient cycling and changing the

ecosystem for all species (figure 1a). Notably, if the contami-

nant’s action was conserved across taxa, such that species C

also became bolder, its population would rapidly decline by

predation-induced mortality from species A. Further, the

decreased numbers of prey species C could potentially result

in predator species B changing its foraging preference to

alternative prey. The risky behaviour of species A will increase

its own probability of being preyed upon, attacked by compe-

titor species B and/or eating novel but toxic or infected foods.

This would, in turn, decrease the predation pressure from pred-

ator species A on species C, and could potentially decrease

competition between species A and B (figure 1b) [72]. We

have included dynamic feedback loops to magnify the actions

of the chemical contaminant on both directly and indirec-

tly affected species, which, in turn, have community-level

consequences and can alter ecosystem functioning (figure 1b).

Importantly, indirect effects due to contaminant-induced

behavioural shifts could cause systems to respond far more

strongly and quickly than an assessment of direct effects

alone, or simply monitoring changes in the abundance of

key predators, would predict [73]. Moreover, contaminant-

mediated effects could yield novel forms of ecological

interactions by, for example, inducing prey-switching due to

changes in predatory behaviour and/or changes in prey

abundance or quality, or by differentially altering the vulner-

ability of individuals or species to parasites [75]. Also, we

have focused on the top-down effects, but some contaminants

will affect primary productivity and so will have bottom-up

impacts. These can be difficult to predict but, again, could

have indirect, sublethal effects by increasing competition for

food and/or necessitating greater foraging distances. Such a

framework allows us to integrate and go beyond individual

experiments and encourages researchers to assess behavioural
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change within its environmental context. By understanding the

behavioural mechanism underpinning multi-level changes,

modelling, for example, can be used to predict the impacts of

contaminants with similar modes of action for enhanced

environmental risk assessments [77]. As an implementation

plan, we provide figure 2, which directs researchers to consider

which experimental design (laboratory, mesocosm or whole

ecosystem manipulations) and level (individual, species or

community) or modelling approaches are required, and

which endpoints should or could be tested. Our basic frame-

work can, therefore, be applied to specific behaviours and/or

interspecific interactions, as well as to different levels of

organisation, as required.
5. Problems of scale and complexity: predicting
effects in the wild from effects in the
laboratory

Predicting the ecological effects and behavioural perturbations

caused by chemical contaminants is valuable for guiding

legislation and policy to protect wildlife, but it is also

challenging for many reasons. Behaviour is inherently

variable—although so are many of the physiological endpoints

currently measured—and how organisms respond to any

given contaminant may vary across an individual’s lifetime,

between sexes, among individuals of the same species, and

across species with different life histories, habitat use, trophic

position and/or physiology [7,10,33,75,78].

Most earlier standardized ecotoxicological tests used

model species that are easily cultured with simple, measurable

endpoints [4], which allowed direct comparisons of toxicity

among different compounds. This long-used approach has effi-

ciently generated hazard and risk assessments for many

chemical contaminants under the premise that similar species

are equally affected by the contaminant. Of course, the ‘all
species are the same’ argument does not hold for the effects

of many contaminants (e.g. pharmaceuticals [79]). Inter- and

intraspecies differences in physiology, behaviour and life

history, when coupled with differential metabolism, generate

substantial differences among species and individuals in

susceptibility and responses to chemical contaminants. Unfor-

tunately, our understanding of comparative mechanistic

responses to contaminants still remains quite limited, even

for model laboratory organisms.

Susceptibility differences between species are one of the

key challenges in ecotoxicology. For example, studies have

shown that small wild-caught prey fish are more sensitive to

the anxiolytic effects of the pharmaceutical oxazepam than

are larger predatory fish or laboratory-reared fish [5,80,81].

This could be due to species differences in the rate and extent

of pharmaceuticals being taken up, metabolized and concen-

trated. Indeed, bioconcentration of pharmaceuticals in fish

tissues can differ by several orders of magnitude between

species [82], and even across life history stages [83]. Therefore,

two species inhabiting the same polluted system can be

exposed to very different internal concentrations of contami-

nants [81]. Moreover, tests including a less vulnerable

life-stage might underestimate ecological risk [83]. Such

differential exposures, and the associated effects, make it

very difficult to predict the ecological effects of chemical

contaminants in the environment [16].

Differential behavioural responses to chemical contaminants

in laboratory-reared versus wild species have also been

explained by the lack of predation risk or high competition in

laboratory environments, which selects for inherited behaviour-

al phenotypes that are often bolder, more aggressive and less

responsive to predators than wild-type individuals [84]. For

example, in assessing the risk of chemicals that potentially

modify anti-predator behaviour, using a laboratory fish model

that may exhibit a suppressed basal behavioural response to pre-

dators may greatly underestimate actual risk in the field

(figure 3). Also, the distribution of behavioural traits studied
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should be characterized within each test group [83]. This con-

sideration is critically important because a contaminant that

acts to increase activity and/or boldness will more probably

generate behavioural change in individuals originating from a

(wild-type) population of low competition/high predation,

compared with a (laboratory-reared) high-competition/low-

predation population that contains many active and bold

individuals (figure 3). Even in the wild, populations of the

same species under different predation pressures are known to

have evolved different physiology, morphology and behaviours

[84]. In terms of our conceptual framework, such population-

level differences in behavioural responses will alter both the

state of a community before contamination, and the magnitude

of feedback loops triggered by a contaminant. Such differences

between populations, generated by differing selection regimes,

have received very little attention despite clearly being impor-

tant considerations when assessing contaminant vulnerability.
6. Future directions
The use of behavioural studies enables us to link the effects of

contaminants at multiple levels of organization, from individ-

ual to ecosystem. This is an invaluable asset, because

chemical contaminants have a wide range of actions and

effects. At the individual level, the fields of behavioural ecol-

ogy and so-called ‘personalized medicine’ are increasingly

realizing the need to analyse inter-individual variation in

responses, not just population means [46]. Far from being

‘noise’, plasticity in responses in itself represents a trait that

can shape the capacity of individuals and populations to

cope with environmental change in the short term. In this

review, we illustrate that chemical contaminants can impact

the capacity of populations to persist into the future by alter-

ing the strength and targets of evolutionary selection, for

example, via direct effects of behaviour. To date, a mechanis-

tic understanding of how evolutionary and plastic responses

interact to facilitate population persistence is lacking. This

also limits our ability to predict how populations will

respond if legislation succeeds in reducing concentrations of

specific chemical contaminants. Consequently, we have

identified avenues to fill the knowledge gaps and challenge

the often simplistic assessment of direct effects of contami-

nants, specifically in terms of how behaviour and other

endpoints should be measured, analysed and interpreted.
With the rise in emerging contaminants, many of which are

designed to exert sublethal effects on evolutionarily conserved

physiological systems at ecologically realistic concentrations, it

is important to update existing frameworks for studying their

short- and long-term consequences. Sublethal behavioural

effects can be both ‘positive’ and ‘negative’ for individuals,

populations and communities. As illustrated by our conceptual

framework (figure 1), effects can vary dynamically within the

same individuals and populations. Indeed, this could be

described as a key feature of emerging or dilute contaminants.

Importantly, behavioural effects can lead to top-down and/or

bottom-up effects. For example, changes at a lower trophic

level could have sublethal effects by increasing competition

for food and/or necessitating greater foraging distances. This

is because linkages within communities will act indirectly to

alter and even magnify contaminant-induced effects. Future

work, integrating modelling, remote sensors and tracking tech-

nologies and statistical analyses, should focus on quantifying

changes on the individual level and how the linkages within

these networks are affected by contaminants. We argue that

understanding the behavioural and ecological mechanisms

underpinning contaminant-induced population changes will

greatly increase the accuracy and power of environmental

risk assessment to protect wildlife and ecosystems from

disturbance by chemical contaminants.
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