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BACKGROUND: Movement is ubiquitous across
the natural world. All organisms move, ac-
tively or passively, regularly or during specific
life stages, as a result of varied proximate
drivers including energetic demands, social
interactions, competition or predation. Move-
ment closely interacts with individual fitness,
affects a myriad of ecological processes, and is
crucial for animals’ ability to cope with human-
induced rapid environmental changes. Driven
by advances in analytical methods and tech-
nologies for tracking mammals, birds, fish,
and other free-ranging vertebrates (hereafter,
wildlife), movement ecology is rapidly trans-
forming into a data-rich discipline, following
previous developments in fields such as ge-
nomics and environmental monitoring. This

ongoing revolution is facilitated by cost-effective
automated high-throughput wildlife tracking
systems that generate massive high-resolution
datasets across scales relevant to the ecological
context in which animals perceive, interact
with, and respond to their environment.

ADVANCES:Modern tracking technologies effi-
ciently generate copious, accurate information
on the movements of multiple individual ani-
mals in the wild. Reverse-GPS technologies,
which primarily use acoustic signals under
water and radio signals over land, are auto-
mated high-throughput systems that are highly
cost- and power-effective and capable of simul-
taneous tracking ofmultiple small animals (e.g.,
20-g birds) at high spatiotemporal resolution

(e.g., 1-s interval, a few meters) for months,
but they require system installation and are
usually limited to regional scales (≤100 km
wide). GPS-based systems are, by contrast,
readily available, longer term, and cover nearly
global scales, but are similarly spatially accu-
rate and periodically capable of high-resolution
tracking at regional scales. However, they are
more cost- and power-demanding, limited to
larger animals, and cannot be applied under
water. Two other tracking technologies, radar
and computer vision, permit high-resolution
snapshots of the movement of multiple indi-
viduals and can noninvasively track nontagged
animals, but are less cost-effective, usually lim-
ited to smaller scales, and make individual
identification challenging. Combined, these
high-throughput technologies enable ground-
breaking research in animal behavior, cognitive
sciences, evolution, and ecology, facilitating
previously infeasible investigation of animal
movement ecology. Big movement data can
help link interindividual variation in move-
ment to individual behavior, traits, cognition
and physiology; divulge fine-scale interactions
within or among species; improve evidence-
based management of human-wildlife inter-
actions; and elucidate behavioral changes
across spatiotemporal scales.

OUTLOOK: High-throughput wildlife tracking
technologies are opening new research fron-
tiers in biology and ecology. Their advantages,
however, comewith typical big-data costs such
as computational load, intensive datamanage-
ment and processing, and challenging sta-
tistical analyses. Enlisting fields with a longer
history of big data offers new prospects to
address these challenges. Progress will arise
from combining observational and experimen-
tal movement ecology and data-rich studies
revealing behavioral shifts across individuals,
species, scales, ecosystems, and life stages.
High-resolution wildlife tracking is currently
infeasible at large to global scales, a key limi-
tation that can be addressed by combining
low- and high-rate sampling, increasing in-
teroperability between technologies, stand-
ardizing and sharing data, and promoting
multidisciplinary international collabora-
tion. Coupling movement and environmental
big data could help determine impacts of
major environmental and climate changes
on animal–environment interactions, whereas
real-time movement data could uniquely in-
form biodiversity conservation and ecosystem
management.▪
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Why do high-throughput movement data matter? Big movement data are essential for addressing key ecological
questions, as conclusions based on traditional lower-resolution data could differ markedly from the correct conclusions.
We illustrate several examples for contrasting conclusions derived from lower- versus higher-resolution data of the
same tracks from the same number of animals. Higher-resolution data can reveal that bolder birds visit more sites across
the landscape and that bird tracks frequently cross each other, suggesting high potential for disease transmission, and
that fish avoid fisheries and frequently search locally within small patches. None of these conclusions, however, could
have been drawn from lower-resolution data. See also movies S1 to S5.
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Understanding animal movement is essential to elucidate how animals interact, survive, and thrive
in a changing world. Recent technological advances in data collection and management have transformed
our understanding of animal “movement ecology” (the integrated study of organismal movement),
creating a big-data discipline that benefits from rapid, cost-effective generation of large amounts of data
on movements of animals in the wild. These high-throughput wildlife tracking systems now allow
more thorough investigation of variation among individuals and species across space and time, the
nature of biological interactions, and behavioral responses to the environment. Movement ecology is
rapidly expanding scientific frontiers through large interdisciplinary and collaborative frameworks,
providing improved opportunities for conservation and insights into the movements of wild animals, and
their causes and consequences.

M
ovement characterizes life. It occurs
in all organisms, affects individual fit-
ness, determines evolutionary path-
ways, and shapes ecological processes,
including responses to anthropogenic

change. Consequently, studies of animal move-
ment have long been central in ecology, animal
behavior, and evolutionary and environmental
biology.More recently, movement research has
experienced a major upsurge with the intro-
duction of a unifying theoretical framework
termed “movement ecology” (1) in addition
to the rapid development of new technolo-
gies and data processing tools (1–3). Specif-
ically, recent advances in wildlife tracking
techniques have revolutionized our capac-
ity to obtain detailed movement informa-
tion in space and time across species (4, 5)

(Fig. 1). With prolific data acquisition and
ongoing advances in the processing of big
data, movement ecology is rapidly shifting
from a data-poor to a data-rich discipline,
similar to previous high-throughput rev-
olutions in diverse fields such as genomics,
bioinformatics, nanoscience, biotechnology, cell
biology, drug discovery, computer science,
and environmental monitoring (6–8). High-
throughput technologies break new ground
in addressing long-standing basic science
questions, such as the existence of cognitive
maps in wild animals (9, 10) and the extreme
flight performance of soaring birds (11, 12).
Furthermore, high-resolution wildlife track-
ing data uniquely permit direct assessment
of how individual animals respond to environ-
mental and anthropogenic change (13, 14).

The engines of the big-data revolution in
movement ecology: Which technologies can
finely track animals on the move?
Data on animal movement consist of time
series of location estimates (1) andmovement-
related covariates (e.g., animal-borne sensor
data and auxiliary environmental data). To
assess which wildlife tracking techniques
can generate big data for movement ecology
research, we adjusted four major criteria used
to define high-throughput data collection sys-
tems in other scientific fields (7, 15). These
systems are primarily defined by their ability
to collect large amounts of data at a high
sampling rate (temporal resolution in the
context of movement ecology) as well as long
tracking duration, high concurrency (simulta-
neous tracking of multiple individuals), and
high cost-effectiveness (total number of lo-
calizations per amount of money, effort, or
time invested). Thus, on the basis of these
four defining criteria, high-throughput tech-
nologies in movement ecology are defined
as “wildlife tracking systems that provide nu-
merous data on the simultaneous movements
of multiple animals, collected at high resolu-
tion over relatively long durations in a cost-
effective manner.” In addition to these four
defining criteria, movement ecology studies
typically consider other features of wildlife
tracking technologies regardless of their ability
to generate big data, particularly the following
five key features: spatial scale (range covered
by the system), spatial resolution (accuracy
and precision), individual and species iden-
tification, invasiveness (disruption to tracked
animals), and applicability (range of taxa and
contexts).
According to the Nyquist-Shannon sampling

theorem (16), sampling at time interval dt is
sufficient to correctly characterize signals
(e.g., behaviors and interactions) that typically
last 2 dt or longer. In some of our examples,
the temporal resolution is ~1 Hz (dt = 1 s),
which enables characterization of behaviors
and interactions lasting just a few seconds.
Unfortunately, the phrase “high-resolution
movement data” has been used inmovement
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ecology literature for a wide range of tem-
poral resolutions, with dt spanning seven
orders of magnitude from tenths of a second
to several hours and even days. In this Review,
we deliberately narrowed this range down to
encompass a much smaller variation (mostly
dt = 1 to 10 s) and report dt for each example.
This flexible approach avoids the pitfalls of
attempting to find a general standard; rather,
researchprograms inmovement ecology should

set thresholds for this and the other defining
criteria and key characteristics according to
the research goals and key features of the
study system (3). Beyond the general trend of
increased information loss at lower resolu-
tion implied by theNyquist-Shannon criterion,
general best-practice guidelines for selecting
dt include, for example, substantial under-
estimation of total travel distance (and there-
by underestimation of the apparent speed) at

relatively low resolution typically applied in
movement ecology studies (e.g., dt ≥ 30 min)
with stronger bias for more tortuous and
faster paths (17, 18) (see movie S1). However,
the combination of high temporal and low
spatial resolution tends toward the opposite
bias especially when movement is slow with
many stops, owing to accumulation of errors
(18, 19). To alleviate these biases, advanced
machine learning methods can be combined
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Fig. 1. High-throughput tracking technologies and trends. (A) Qualitative
evaluation of the four defining criteria (red) and five key characteristics (blue) of eight
major wildlife tracking technologies (ordered according to their high-throughput
capacity), as estimated by 23 experts in animal tracking. Higher scores representmore
favorable high-throughput performance. (B) Cost-effectiveness was quantitatively
estimated as the number of localization attempts per investment (1 US dollar) for five
tag-based tracking systems. (C) Pronounced increase (six orders of magnitude) in
data yields over the past 15 years, marking a shift from manual triangulation to

automated reverse-GPS systems in both fish and birds. Each symbol represents a
single study system in a certain year, with those linked by black lines representing
yields from the same system across years; the mean trend is shown in green with
95% CIs. (D) Proportion of species that can be tracked by the smallest tags currently
used to track fish (tag mass <2% of body mass), birds, and mammals (<3% of body
mass for both). For details on estimation procedures and data sources, see
supplementary materials (101). GSM, global system for mobile communications
(global standard for cellular networks); PSAT, pop-up satellite archival tags.
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with mechanistic agent-based models to cap-
ture the relevant resolution and scale of the
study system, as we further discuss in the “Data
processing and analysis” section.
A rich variety of technologies have been

used to gather information on animal move-
ment in the wild (3, 20). Over the past two
decades, technological advances (Fig. 1A) have
yielded much larger datasets than what was
formerly possible (Fig. 1, B and C), and tag
miniaturization has increased the proportion
of species that can be tracked (Fig. 1D). How-
ever, wildlife tracking technologies vary in
how they tackle the basic trade-offs between
the four criteria and other key characteristics.
We qualitatively assessed eight common track-
ing technologies on the basis of our four de-
fining criteria and their main limitations and
strengths (Fig. 1A), and we quantified their
cost-effectiveness as the total number of local-
izations (the product of the first three criteria
that can be generated on the basis of the same
investment (Fig. 1B). These comparisons re-
vealed three fairly distinct groups of high-
throughput technologies (see “Data collection”
for details): (i) Reverse-GPS systems, includ-
ing acoustic trilateration of aquatic animals
(21–30) and radio trilateration of terrestrial
animals (10, 20, 31–35), regularly meet most
criteria, and their main constraints are rela-
tively limited spatial scale and installation costs.
(ii) GPS with upload (11, 12, 36–42) and GPS log-
gers (9, 43–45), also meet most criteria under
certain circumstances and can track terrestrial
(and some aquatic) animals at large to global
scales;however, theseareusually less cost-effective
and less applicable (expensive tags, cannot be
applied under water and are limited to relatively
large animals or to study systemswhere animals,
including small ones, can be recaptured to re-
trieve data). (iii) Tracking radars (46) and com-
puter vision (47–51) also meet most criteria
under certain circumstances and are usually
noninvasive but are less cost-effective and
much more restricted in their applicability,
spatial range, and tracking duration; further,
specific individuals (and often species) can
seldom be identified. Three other technologies—
manual triangulation, automated triangulation,
and geolocators—have relatively low resolutions
and do not generate big data, and therefore do
not qualify as high-throughput tracking systems.

New big-data frontiers in movement ecology
Ecology, behavior, ontogeny, and fitness
of individuals

Research under ecologically realistic conditions
is imperative for understanding how variation
among individual animals shapes ecological,
behavioral, and evolutionary processes (52).
Recent research is harnessing high-throughput
technologies to quantify behavioral variabil-
ity in free-ranging individuals, allowing ex-
ploration of the causes and consequences of

variation among individuals in movement,
internal state (e.g., energy status), ontogeny
(e.g., maturation and experience), behavioral
traits (e.g., personality), or cognitive skills (e.g.,
spatial memory), as well as trait covariation
patterns and individual fitness (Fig. 2).
Practical difficulties in measuring individ-

ual states, traits, and behaviors have restricted
researchers to conducting studies under con-
trolled, often captive, conditions. However,
reliance on captive animals poses problems
of ecological validity (53). Wildlife tracking
enables greater realism, but behavioral patterns
can be missed by traditional low-throughput
methods (e.g., movie S1). Some recent studies
have successfully combined extensive yet rela-
tively low-resolution GPS datasets and model-
ing approaches to infer behavioral variation
among individual caribou (Rangifer tarandus;
dt = 1 to 4 hours) (54) and white storks
(Ciconia ciconia; dt = 5 min to 12 hours) (55).
Further, an experimental field approach was
successfully applied to roe deer (Capreolus
capreolus; dt = 1 hour) (56). Despite the rela-
tively low-resolution data, they all met the
Nyquist-Shannon criterion such that the
applied temporal resolution successfully
captured the mechanisms investigated. High-
throughput tracking systems can further trans-
form this line of research by providing detailed,
fine-scale data from a large number of indi-
viduals with known attributes moving simul-
taneously in their natural landscapes. For
example, ATLAS (Advanced Tracking and
Localization of Animals in real-life Systems)
data (dt = 1 to 8 s) from free-ranging ani-
mals revealed evidence for cognitive maps in
Egyptian fruit bats (Rousettus aegyptiacus)
(9, 10) and associations between cognitive
traits and movement in pheasants (Phasianus
colchicus) (32) (Fig. 2A). Data from high-
throughput systems also improves estimates
of individual fitness in wild animals, for in-
stance by enabling accurate detection of the
location, timing, and probable cause of mor-
tality events, even when carcasses are moved
by predators (Fig. 2A).
High-throughput technologies also enable

new opportunities for investigating how eco-
logical factors may impose physiological chal-
lenges on individuals during energy-demanding
activities such as foraging, migration, predator-
prey interactions, or parental care (25). For
example, acoustic trilateration (dt = 9 s) re-
vealed that more active northern pike (Esox
lucius) were more vulnerable to angling (30)
(Fig. 2B). Understanding the drivers and
consequences of movement and space use
may require tracking individuals over long
time periods or across different life stages
(57), hence a somewhat lower temporal reso-
lution. For instance, long-term (11 years) GPS
tracking (dt = 1 to 3 min) of northern gannets
(Morus bassanus) revealed sex-related variation

in foraging timing and duration and habitat
selection in some years but not others (44).

Biotic interactions

High-throughput systems provide themeans
to detect social and other intraspecific inter-
actions among individuals in natural environ-
ments through simultaneous tracking of most
or all group members (37, 41); such interac-
tions have previously been difficult to assess
(52) (see alsomovie S2). For example, in whole
flocks of vulturine guineafowl (Acryllium
vulturinum) tracked by GPS tags (dt = 1 s
every fourth day), both dominant and subordi-
nate birds were found to lead group forag-
ing movements, depending on the resource
type being exploited (41). Havingmore detailed
data on the movement of the same number of
individuals can also illuminate the true nature
of interspecific interactions (see summary
figure), ideally augmented by simultaneous
tracking of most or all animals engaged in such
interactions (e.g., competitors, predators, or
prey). This highly challenging need (see “Data
collection”) has been acknowledged, for ex-
ample, in studies of interactions amongmul-
tiple host, vector, and reservoir populations
involved in disease transmission (58) aswell as
in the context of predator-prey interactions (59).
Classic concepts in ecology and animal be-

havior (e.g., optimal foraging and ideal free
distribution), are based on simplifying assump-
tions such as context-independent decisions
and complete information transfer among in-
dividuals, which are often violated in real-life
settings (60). High-throughput systems enable
a more realistic perspective on biotic interac-
tions both within and among species, revisit-
ing existing concepts and permitting new
insights on space use strategies in competitive
or predator-prey relationships (61). For exam-
ple, high-resolution ATLAS data (dt = 8 s)
revealed robust spatial partitioning among
two adjacent bat colonies that cannot be ex-
plained by commonly hypothesized compe-
tition, but could emerge from memory and
information transfer (34). High-resolution
GPS tracking (dt = 0.2 s) enabled the assess-
ment of how individual pigeons within coor-
dinated flying groups responded to a robotic
predator, providing evidence that refutes the
well-established selfish herd hypothesis (45).
High-resolution data are generally necessary
for analyzing interactions with a strong dy-
namic perspective because encounters (or
avoidance) may be cryptic, occasional, or
ephemeral (62). For example, the number of
potential predation events (when a predator
is in close proximity to its prey) decline expo-
nentially with increasing sampling interval
(original dt = 1 min), implying that the true
nature of predator-prey dynamics among fish
cannot be detected by lower resolution data of
the same sample size (Fig. 3).
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Interactions with natural and anthropogenic
environments
Coupled with fine-scale environmental mon-
itoring, high-throughput tracking systems re-
veal how animals respond to environmental
stimuli (Fig. 4 and movies S3 to S5), providing
critical information for developing effective

management and restoration actions (13, 14).
For example, high-resolutionGPS data (dt= 1 s)
combined with triaxial accelerometry and
atmospheric modeling were necessary to re-
veal differential responses of adult and juvenile
griffon vultures (Gyps fulvus) to challenging
soaring conditions (38) (Fig. 4A andmovie S3).

Further, whole-lake acoustic trilateration (dt =
9 s) revealed interaction between a non-native
wels catfish (Silurus glanis) and physical
features (e.g., water temperature) of a novel
environment (27).
High-throughput tracking data, coupled

with mapping of relevant human activities,
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Fig. 2. Inference on patterns of variation in movement, behavior, and
fitness among individuals and their potential drivers. (A) ATLAS-tracked
(dt = 4 s) young pheasants (P. colchicus) that performed better in spatial
cognitive tasks in captivity made slower transitory movements during early
stages of exploration in the wild, but their speed increased with experience
in the environment; poor cognitive performers moved faster during early
exploration but did not differ in their speed later on (32) (top plot). This
general trend is illustrated for two representative ATLAS-tracked individuals
(middle plots). Histograms show the number of fast steps (>1 m/s). The
bottom map shows the track of a pheasant (blue lines) that was killed and
carried away (with the ATLAS tag intact) by an untagged fox (Vulpes vulpes)
(black lines). ATLAS informed the exact timing and location of such mortality

events, whereas in situ observations (skull and crossbones, magnifying glass)
would place the mortality location 400 m away with an 8-day uncertainty about
its timing in this example. (B) More active northern pike (E. lucius) tracked
in the wild using acoustic trilateration (dt = 9 s) were more likely to be
captured by angling (purple) (top plot), suggesting that angling pressure
results in shyer, less active pike populations (blue) (30). Variation in
activity between captured and noncaptured pike is illustrated in the map
by six representative tracks (marked by asterisks in the top plot), with dotted
lines representing data gaps (dt > 60 s). The strength of harvest selection
on fish behavior, represented by the mean-standardized linear selection
gradient (bm), is rapidly overestimated (more negative values) as temporal
resolution decreases (longer sampling intervals) (bottom plot).
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enable evidence-based conservation andman-
agement across diverse ecosystems (28). For
example, endangered European eels (Anguilla
anguilla) tracked during downstream migra-
tion by acoustic trilateration (dt = 1 s) showed
rapid behavioral shifts upon encountering
rapid experimentally induced fluctuations in
flow velocity near dams (23), which cannot be
detected when tracks are sampled at even
slightly longer intervals (Fig. 4B; see another
example in movie S4). This technology (dt =
5 s) also illuminated ecosystem-based effects
of recreational activities such as anglers add-
ing feed resources to lakes (26). Furthermore,
emerging technologies enable rapid, nearly

real-time, fine-scale data collection and have
recently been used as early alert systems, revo-
lutionizing how resources are managed (63).
For instance, high-resolution GPS tracking of
albatrosses (dt = 1 min) and condors (dt = 30 s)
can autonomously and immediately reveal the
location of illegal vessels in the ocean (42) and
of potential collisions with wind turbines (36)
(see also movie S5), respectively.

Patterns and mechanisms across
spatiotemporal scales

Quantifying how movement patterns and driv-
ers change across scales is a major challenge in
movement ecology (1, 64, 65). In controlled

settings, high-throughput methods allowed
inference on multiscale behavior of zebrafish
(Danio rerio) (66) and anomalous diffusion
in small invertebrates (48). Scale-dependent
behaviors have also been studied in free-
ranging terrestrial andmarine animals (49, 64),
but the relatively low-resolution data used in
these studies cannot detect behavior at the
fine resolution and scale at which animals
typically sense and respond to their environ-
ment (49, 67).
Black-wingedkites (Elanus caeruleus) tracked

using ATLAS (dt = 4 s), for example, showed
substantial variation in movement phases at
local scales, which remains undetectable even
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Fig. 3. The nature of biotic interactions. Prey fish (roach, Rutilus rutilus,
black lines) were tracked using acoustic trilateration (dt = 9 s) simulta-
neously with predators (northern pike, E. lucius, red lines). Predators and
prey were similar in their diurnal cycles (A) but differed in their spatial
activity patterns (B). Short-range (>2 m) predator-prey encounters occurred

throughout all times but more during the night (C), and at two large
predation hotspots (D) that only partially overlapped with the main activity
area of the predators. The number of potential predator-prey encounters
(E) was rapidly underestimated as temporal resolution decreased (longer
sampling intervals).
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Fig. 4. Insights into the responses of wild animals to their abiotic
environment and to human-induced environmental changes. (A) High-
resolution (dt = 2 s) GPS tracking of griffon vultures (G. fulvus) revealed that under
more challenging soaring conditions (intermediate wind shear), juveniles climbed
more slowly in rising-air thermals because of their lower efficiency in circling
around wind-drifted thermals compared with adults (38). Vulture thermal circling
is clearly evident in the high-resolution data but cannot be recognized even at
slightly lower resolution data (dt = 1 min). According to the Nyquist-Shannon criterion,
a typical circling duration of ~15 s (~4 circles min−1; zoomed-in section) requires

dt ≤ 7.5 s. (B) Acoustic trilateration (dt = 1 s) revealed that downstream-migrating
endangered European eels (A. anguilla) shift their behavior from semipassive
downstream swimming to either upstream escape or local search upon encountering
experimentally varied flow regime near the exit of a hydropower facility (23). A
constricted high flow regime generally elicits longer upstream escape (top map),
whereas unrestricted low flow leads to shorter, spatially confined searches for the
nearby exit. This difference in behavioral response becomes undetectable and
insignificant as sampling interval increases, indicating that relatively high-resolution
tracking is required to infer fish response to anthropogenic structures.
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at slightly lower temporal resolution (Fig. 5).
This shows that notions of universal forag-
ing behavior and scale-free movement (68)
should be replaced by case- and scale-specific
behavior andmovement, and thathigh-resolution
data areneeded todetect differences among these
patterns. Furthermore, high-resolution data
enabled researchers to distinguish ergodic from
nonergodic processes, a key question in studies
of dynamical systems and stochastic processes
that has been overlooked in many disciplines
(69), including movement ecology. In ergodic
systems, different segments are equally repre-
sentative of the whole; hence, averaging reveals
a typical behavior. However averaging could be
misleading in nonergodic systems, which lack
a typical behavior. Assessment of ergodicity is
therefore crucial inmovement ecology, dictating
whether one can infer by ensemble-averaging
over multiple movement segments. For forag-
ing raptors, ATLAS revealed a substantial dis-
tinction between the ergodic, superdiffusive

(faster than diffusive) nature of commuting
and the nonergodic, subdiffusive (slower than
diffusive) nature of local movement, implying
a limited number of ways to commute be-
tween distant patches but many ways to hunt
or stop within a local patch (Fig. 5) (35).

The basic steps in high-throughput movement
ecology research
Study design

Movement ecology studies are often based on
the field observational approach, document-
ing the full complexity of natural movement
but with limited capacity to discern and iso-
late the factors shaping movement variation.
The alternative experimental approach is typ-
ically applied in controlled laboratory settings
and is less prevalent in studies of animals in
the wild. Although field experiments have
been conducted with relatively low-resolution
movement data (e.g., dt = 1 hour) (56), high-
resolution data are necessary for field experi-

ments involving short-termbehaviors, fine-scale
encounters, or multiple interacting individuals
or species. High-throughput tracking systems
can therefore broaden the scope of experimen-
tal movement ecology, creating new opportu-
nities to develop a “laboratories-in-the-wild”
experimental approach (22, 28, 29).
The two approaches can be combined to

address key questions in movement ecology
through high-resolution tracking of bothman-
ipulated and nonmanipulated free-ranging
individuals. For example, 149 nonmanipulated
ATLAS-tracked (dt = 1 to 8 s) Egyptian fruit
bats undertook straight shortcuts during their
foraging flights, and 23 additional manipu-
lated (transferred to the periphery of their
foraging range) bats returned directly to their
preferred fruit tree, complementing evidence
for a cognitive map (Fig. 6A) (10). Similarly, an
individual’s movement before, during, and after
an experimental trigger can be compared (23)
(Fig. 4B). Additionally, individuals with known
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Fig. 5. Detecting commonalities and differences in animal movement
and behavior across multiple spatiotemporal scales. Segmentation of a
3.6-hour track of a single black-winged kite (E. caeruleus) randomly selected
from 155 days of high-resolution (>106 localizations) ATLAS tracking (dt = 4 s)
revealing (A) four segments of area-restricted search (ARS, red dots within
purple circles) connected by commuting flights (blue dots with black arrows
showing direction). Zooming into one ARS (inset) reveals six local clusters
(orange circles), which cannot be detected using lower-resolution data (B) that
entail insufficient information (only 34, 7, and 3 ARS localizations for dt = 1, 5,
and 15 min, respectively), compared with the high-resolution data (dt = 4 s;
491 localizations). (C) Time-averaged mean square displacement (MSD) of

nonsegmented daily tracks recorded across 155 days (black crosses), which is
not well fitted to a single power-law exponent across all temporal scales, but has
a steeper slope indicating superdiffusive motion at DT < 100min and a shallower slope
indicating subdiffusive motion DT > 100 min. Segmenting the track to commuting
and ARS (blue and red shaded areas, representing 90% of the trajectories), a clear
distinction emerges between superdiffusive ergodic commuting (blue) and sub-
diffusive nonergodic ARS (red) (35). For the ARS, the distribution of the measured
time-averaged MSD around the mean is large and skewed, indicating nonergodicity
(inset, orange line), in contrast to the commuting (inset, blue line). Lower sampling
frequencies are insufficient to detect such trends, as they hold information on a notably
more limited temporal range, as indicated by the bars for dt = 5, 10, and 15 min.
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traits can be introduced to novel wild environ-
ments, to test predictions on trait-movement
associations. For example, ATLAS-tracked
(dt = 4 s) juvenile pheasants that exhibited
higher spatial cognition under controlled
conditions were slower to explore their land-
scape shortly after release into the wild but
showednotable improvement after a fewweeks
(32) (Fig. 2A). Although behavioral and cogni-
tive traits measured in confined controlled
versus wild conditions might be similar (e.g.,
Fig. 6B), trait expression, variability, andamong-
trait correlations are extremely context-dependent,
and hence can differ between laboratory and
wild conditions (70). Finally, individual states
can be manipulated and the outcome in the
wild can be monitored to examine long-term
consequences of short-termenvironmental stress.
For example, acoustic trilateration (dt = 1 min)
of largemouth bass (Micropterus salmoides) in
a lake revealed both a short-term (first few days)
response to experimentally induced stress of in-
creased activity, and unexpected long-term (mul-
tiplemonths) carry-over effects rendering stressed
fish vulnerable to hypoxia in winter (21).

Data collection

Wild animals are tracked using four funda-
mental methodologies (20): Two of these use
an electronic animal-borne tag that either
transmits a signal (transmitter localization)
or receives or senses a signal (receiver-sensor
localization), whereas the other two use ani-
mals or tags that reflect either an ambient
signal (passive reflection) or a signal emitted
by the tracking system (active reflection)
(Fig. 6C). These systems can use radio, acous-
tic, or visual signals, as well as temperature,
pressure, and other environmental cues. Trans-
mitter localization systems require animal cap-
ture and tagging, whereas reflection systems
can noninvasively track nontagged animals.
In receiver-sensor localization systems, data
are collected on the tag and must be retrieved
by remote upload or animal recapture (9).
The five primary high-throughput wildlife

tracking technologies (Fig. 1) differ in their

compliance with high-throughput criteria.
Reverse-GPS systems are transmitter local-
ization systems that track transmitting tags
through an array of receivers by time-of-arrival
estimation (trilateration). The term “reverse-
GPS” emphasizes that, similar to GPS, these are
accurate trilateration-based systems, but unlike
GPS, raw data and localizations are collected by
the system and not on the tag. Reverse-GPS
systems use small, energy-efficient, and inexpen-
sive tags, which can be used to track multiple
animals simultaneously at high spatiotemporal
resolution (typically dt=1 to 10 s, 1 to 5mmedian
spatial error) and hence regularly provide high-
throughput data. These systems include acoustic
trilateration of aquatic animals (21–30) and
radio trilateration of terrestrial animals (e.g.,
ATLAS) (10, 20, 31–35). Historically, reverse-
GPS techniques were applied to track wildlife
>50 years ago (71, 72) but did not reach high-
throughput capacity until after automation
during the past decade and evenmore recently
for terrestrial systems (Fig. 1C). Their main
limitations are relatively restricted range
(≤100 km) and installation costs.
GPS and GPS-like systems are receiver lo-

calization systems that track tags by trilatera-
tion using a satellite constellation. GPS systems
with upload capability retrieve data from tags
through a satellite or cellular link, allowing
global coverage at low-resolution mode (typi-
cally dt= 15min to 1 day) and regional coverage
(a few hundred kilometers) at high-resolution
mode (11, 12, 36, 37–40). However, GPS tags are
expensive and relatively heavy as satellite and
cellular links and onboard localization cal-
culations impose energy costs, limiting these
heavier tags to larger animals (though less
so with solar charging), thus reducing cost-
effectiveness. GPS loggers lacking remote
upload facilitate collection of high-resolution
data (d = 0.1 to 1 s) from additional sensors
(e.g., accelerometers), which are useful for
estimating energy expenditure, identifying
behaviors (73) and neighbors (43), and fur-
ther refining path resolution through dead
reckoning (74). However, they require animal

recapture or tag recollection (9), which further
limits spatial coverage and applicability.
Tracking radars use active reflection of radio

signals and are capable of collecting extensive
movement data of many nontagged animals
simultaneously at high spatiotemporal resolu-
tion [e.g., dt = 1 s (46)]. However, they rely on
expensive and highly specialized radio trans-
ceivers, have limited ability to identify species
or individuals, and are usually limited to local
or regional scales. Computer-vision algorithms
basedonmodernmachine learning approaches,
such as convolutional neural networks, can be
applied to noninvasively (i.e., without trapping
and tagging) track wild birds (47) and fish
(49, 50, 51) in their natural habitats at very high
spatiotemporal resolution (e.g., dt = 0.03 s).
However, camera tracking in the wild is typ-
ically limited to short ranges, an individual’s
identity cannot be maintained across videos
without natural or artificial marking, track-
ing multiple individuals is still computation-
ally demanding and time-consuming, and the
tracking period is usually short (often ≤30min)
or intermittent.

Data processing and analysis

As in other fields, managing, processing, and
analyzingmassive datasets in a timelymanner
present major challenges (75). The computing
infrastructure needed to store and analyze data
is expensive and generates a large carbon foot-
print (33, 76). Solutions may be inspired from
other big-data fields, such as genomics (6), re-
mote sensing (77), and human mobility (75),
including robust exploratory data analysis and
automated reproducible data-processing pipe-
lines (6). Big-data exploration can be facilitated
by spatial heatmaps of localizations (Fig. 6D) or
by plotting individual tracks and distributions
of keymovementmetrics such as speed. These
first steps are crucial to identify patterns in the
ecological processes observed, as well as loca-
tion errors such as outliers (Fig. 6, D and E).
Preprocessing pipelines can then prepare

the full dataset for statistical analyses by fil-
tering unrealistic movement (33, 76), after
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Fig. 6. Key steps in high-throughput movement ecology research. (A) ATLAS-
tracked (dt = 1 to 8 s) Egyptian fruit bats (R. aegyptiacus), after being
translocated to the periphery of their foraging range, returned to their specific
foraging tree along straight trajectories (black lines), similar to nonmanipulated
individuals taking shortcuts, altogether complementing field evidence for the
existence of a cognitive map (10). (B) Evidence for consistent differences
between bolder and more active (purple) versus shy and less active (blue)
European perch (Perca fluviatilis) as observed in lab trials and after release to the
wild. (C) An overview of primary wildlife tracking technologies. Referring to the
animal icons from left to right and from top to bottom, the illustration shows
(shark) popup PSAT tags that report Doppler, solar, or temperature geolocation
through a satellite data link; (bat) automatic radio triangulation or reverse-
GPS tags; (sea turtle) Doppler ARGOS tags and GPS tags that upload location
through a satellite or cellular link; (eagle) radar tracking; (gannet) GPS logger;
(small bird) solar geolocators; (fox) computer vision tracking; and (fish)

computer vision tracking or ultrasonic aquatic reverse-GPS. Raw datasets are
often subject to (D) exploratory data analysis, such as initial assessment of
space use by ATLAS-tracked Egyptian fruit bats in relation to roosts and fruit
trees, filtered to remove unrealistic movements and further processed and
smoothed as illustrated for (E) ATLAS-tracked (dt = 9 s) red knots (Calidris
canutus) and (F) acoustic trilateration tracking (dt = 2 to 10 s) of a rough
ray (Raja radula) (28). In the following data analysis step, researchers can apply
various statistical methods to extract information from high-throughput data
to investigate, for example, (G) space use by a pike (E. lucius) using kernel
density smoothing and residence patch analysis; (H) habitat selection assessed
by applying integrated step-selection functions to ATLAS data (dt = 8 s) of
yellowhammers (Emberiza citrinella), revealing that birds move faster in land-use
classes that they avoid relative to urban areas; and (I) diel changes in the
behavior of an oceanic whitetip shark (Carcharhinus longimanus) inferred from
acceleration data using a hidden Markov model.

RESEARCH | REVIEW
D

ow
nloaded from

 https://w
w

w
.science.org at M

onash U
niversity on February 17, 2022



which animal paths can be approximated from
raw localizations using smoothing methods
(33) (Fig. 6E), or by fitting a movement model
such as a continuous-time correlated random
walk (28) (Fig. 6F). Even after removal of
technology-induced outliers, accounting for
positioning error is critical, and effective error
calibration and emerging methods for model-
ing data error structure can be used to improve
positioning estimates of animalmovement (78).
Although position data from high-throughput
technologies are generally more accurate than
data from low-throughput ones (17), the high
sampling frequency implies that location er-
rors are autocorrelated, motivating further
upgrades of calibration models (78), move-
mentmetrics (18), and space use estimates (79).
Similar pipelines can be built for movement-
associated data such as 3D acceleration (80)
(Fig. 6G).
Practically, commercial GPS devices nearly

always employ on-board data filtering and
smoothing algorithms. Similarly, raw data
from acoustic trilateration tags are typically
processed by proprietary software to obtain
position estimates, rendering these procedures
a “black-box” for data users. The development
and ownership of new high-throughput tech-
nologies by movement ecologists themselves,
such as Yet-Another-Positioning-Solver (YAPS)
(24) and ATLAS (10), could help the devel-
opment of transparent and well-documented
raw-data processing pipelines. Pipeline repro-
ducibility can be improved by adopting com-
putational science best practices, such as unit
testing components for correct data handling,
version control, and continuous integration
testing (6, 81). Increasing pipeline efficiency can
allow massive datasets—which currently range
between 106 and 109 data points per study for
basic movement data alone (Fig. 1C)—to be
processed on conventional computing hard-
ware. Use of compiled languages for pipeline
backends and parallel computing can reduce
computational times (6, 77).
Big data reinforce a trade-off between com-

plex models that aim to adequately mimic
individual decision-making in a rich physical
or social environment but are challenging
to work with, and simpler approaches that
are easier to implement but may oversimplify
the biological process or suffer from statisti-
cal shortcomings such as a lack of uncertainty
propagation or inadequate modeling of the
autocorrelation structure (82). Analytical ap-
proaches for movement data include home
range analyses (79) (Fig. 6G), social network
analyses (37, 41), and time-varying integrated
step-selection functions (83, 84) (Fig. 6H).More
complex individual-level or group-dynamic
movement models such as stochastic differen-
tial equations or (hierarchical) hiddenMarkov
models (Fig. 6I) have been developed over the
past decade, with user-friendly software pack-

ages to aid implementation (2, 82). Further
methodological advancements allow identi-
fication of how individual foraging attempts
are driven by highly dynamic local environ-
ments (85), as well as relating individual
movement to that of nearby conspecifics (86).
Individual behaviors can be classified from
high-resolutionGPSandaccelerationdatausing
machine learning algorithms (39, 40, 73, 87)
and identified behaviors can then be related
to individual attributes and/or environmental
features (53, 55, 88). However, elucidating the
drivers of individual movement variation re-
mains challenging (53).
One promising approach, recently proposed

for related challenges in geographical, social,
and computer sciences, combines computa-
tionally demanding agent-based models and
data demanding deep learningmethods to de-
codehiddenmechanisms fromhigh-throughput
data (89, 90). Agent-based models can reveal
the emergence of system-level patterns from
local-level behaviors and interactions of system
components (91). Using genetic algorithms,
initial candidate rulesets for individual decision-
making can evolve into a robust ruleset that
is able to reproduce the unique range and
quality of spatial and temporal patterns in
high-throughput data (“reinforcement learn-
ing” (89)]. Such patterns can be revealed by
applying machine learning methods, includ-
ing neural networks and deep learning (90).
The combination of multiple patterns in high-
throughput datasets at different hierarchical
levels and scales leads to unprecedentedmodel
robustness, optimized model complexity, and
reduced uncertainty (91). In this pattern-driven
process, model specification, calibration, and
validation steps are all implemented dynam-
ically and iteratively during the model run-
time, thus enabling “learning on the go” (89).
Overall, the increased availability of high-
throughput data will continue to motivate the
uptake, refinement, and development of novel
methods for both data processing and analysis
(3, 84, 86, 87, 92).

Collaborative networks

By permitting comparisons of animal move-
ment across sites, times, and species, high-
throughput technologies can motivate large
collaborative networks to address questions
on animal adaptations and plastic responses
to climate and other environmental changes.
Notable examples include the Ocean Tracking
Network (93), the European Tracking Network
(94), and the Arctic AnimalMovement Archive
(95). Such collaborative networks and plat-
forms guide the process of establishment and
maintenance of tracking infrastructure, facil-
itate efficient exchange of data, knowledge,
analytical tools, software packages, and pre-
processing pipelines, and offer valuable oppor-
tunities for scaling up study areas, addressing

broader ecological questions, training, outreach,
and funding acquisition (75, 96). Enhanced
cooperation among traditionally separate dis-
ciplines such as ecology, computer science,
engineering, bioinformatics, statistical physics,
epidemiology, geography, and social sciences is
crucial for advancingmovement ecology research
and facilitating efficient education and outreach.

Major challenges and future directions

Key high-throughput technologies provide the
means to characterize, in fine resolution, what
individual animals do in their natural ecologi-
cal context. Although low-resolution datamight
potentially provide equivalent information by
increasing sample size (e.g., trackingmanymore
individuals), acquiring sufficiently large sam-
ple sizes is often impractical, and sample size
should be kept as low as possible, not only for
cost considerations but also for ethical reasons.
However, despite their very broad scope, high-
throughput technologies cannot by themselves
cover all aspects ofmovement ecology research,
mostly because they are practically and natu-
rally limited to studies at local and regional
spatial scales (currently ≤100 km) and/or
intermediate durations (days to a few years).
Although advances in tag technologies (mini-
aturization, energy harvesting, data storage,
and communication) predict better high-
throughput performance (e.g., higher tempo-
ral resolution and/or longer periods), spatial
scale may remain limited for at least the near
future. Projects focusing on larger spatiotem-
poral scales (11, 55, 67) are inherently con-
fined to low-throughput tracking, with data
collected atmuch lower frequencies or atmuch
higher costs per tracked individual though
they may still yield large datasets. These in-
clude automatic triangulation systems such as
MOTUS (97), Doppler-based receiver local-
ization systems (98), the new satellite-based
ICARUS system, and geolocators (99). We thus
see high- and low-throughput technologies
as complementary rather than competing
alternatives and advocate for their integration
(1, 65).We also call for better integration among
high-throughput technologies, especially be-
tween reverse-GPS systems and computer
vision, to provide detailed information on both
tagged and nontagged interacting animals and
their environments. Challenges in integrating
contemporary tracking technologies—which
hinder progress in addressing both small-
and large-scale and single- and cross-taxa
questions in addition to attempts to scale up
from individual-based information to pop-
ulations and communities (100)—could be
addressed through better cooperation and
coordination betweenmanufacturers and users
(29, 96). Extending tracking duration and
range, ideally to span the lifetime of tracked
animals, is important for elucidating how
behavior, cognition, and physiology develop
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across spatial and temporal scales and in rela-
tion to environmental changes. Accomplishing
this goal also requires further technologi-
cal developments and greater integration of
contextual environmental data with high-
throughput movement data, linking move-
ment ecology with studies of climate and
environmental change.
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Animal tracking in a big data world
So-called “big-data” approaches have revolutionized fields of research from astronomy to genetics. Such approaches
are not limited to fields that seem inherently technical, because the combination of rapid data collection and advanced
analytical techniques could be applied to almost any scientific question. Nathan et al. reviewed how these modern
approaches are being applied to the very old field of animal tracking and monitoring. Large-scale data collection can
reveal details about how animals use their environment and interact with each other that were impossible to explore
previously. Such methodological shifts will open new avenues of research—and conservation—across species. —SNV
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